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Planning offline inspection strategies in low-volume manufacturing processes

Elisa Verna, Gianfranco Genta, Maurizio Galetto, and Fiorenzo Franceschini

Department of Management and Production Engineering, Politecnico di Torino, Torino, Italy

ABSTRACT
The design of appropriate and successful quality-inspection strategies plays an important
role within manufacturing organizations. It is one of the leverage factors to ensure custom-
ers the expected quality level of products. In the case of low-volume or single-unit produc-
tions, such as those produced with emerging additive manufacturing (AM) technologies, the
design of quality controls may be problematic due to the lack of historical data and
the inadequacy of traditional statistical approaches. In literature some studies focused on
the design and selection of in-process inspection strategies for low-volume productions.
However, in some cases, such as AM productions, in-process inspections may not be
adequate, easy to perform or cost-effective. To this end, the present work aims at identify-
ing a general methodology for planning offline inspections for low-volume productions. The
specific research question addressed concerns how to select the best compromise between
effectiveness and affordability of alternative offline inspection strategies for such produc-
tions. The proposed method consists of formulating a probabilistic model for predicting
defects and defining two performance indicators that outline the overall effectiveness and
affordability of an offline inspection strategy. This approach is finally applied to a real low-
volume AM production of parts manufactured by selective laser melting (SLM) technique.
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Introduction

In a highly competitive context such as the global
market, ensuring high product quality has become a
key factor to withstand competition. In this regard,
organizations are increasingly investing in the devel-
opment and implementation of quality control sys-
tems (QCS) that can provide consumers with high
quality products in line with their expectations
(Azadeh et al. 2015; Mirdamadi et al. 2013).
Moreover, QCS has always been the most cost-effect-
ive tool to reduce inefficiencies within the organiza-
tional supply chain (Mohammadi et al. 2015). In
addition, due to the increasing complexity and cus-
tomization of products, more and more sophisticated,
flexible and therefore expensive quality control sys-
tems are required. Accordingly, designing effective
and affordable inspection strategies represents an
essential and challenging issue in quality control
(Franceschini et al. 2018).

Inspection process planning (IPP) is the activity that
defines which quality characteristics of a product
should be inspected, where and when (Zhao, Xu, and
Xie 2009; Pfeifer 2015; Mohammadi et al. 2015).

Inspections may be designed using different strategies
and following statistical or heuristic procedures
(Montgomery 2012; Mandroli, Shrivastava, and Ding
2006; Tang and Tang 1994). Moreover, since products
are increasingly customized and complex and therefore
require highly changeable production processes, it is of
increasing importance to develop appropriate control
strategies, defining test procedures, cases and resources,
in order to identify the most critical and vulnerable
process characteristics (Colledani et al. 2014).

In the planning of inspections, a distinction between
in-process and offline inspection strategies must also be
considered. In in-process inspections, also called online
inspections in the scientific literature, units are
inspected during the manufacturing process
(Tzimerman and Herer 2009; Tirkel et al. 2016; Azadeh
et al. 2015; Wang 2009). On the other hand, in offline
inspections the finished products are inspected after the
manufacturing process is completed (Tzimerman and
Herer 2009; Kang et al. 2018). Offline inspections con-
sist in inspecting a random item from the batch and,
based on the inspection result, a decision is taken on
what to do next (Tzimerman and Herer 2009; Colledani
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and Tolio 2009; Raz, Herer, and Grosfeld-Nir 2000;
Wang 2007; Finkelshtein et al. 2005). In-process inspec-
tion regimes are considered more economical and
effective than offline inspection ones (Tzimerman and
Herer 2009). However, there are situations in which in-
process inspections are not adequate, impossible to per-
form or not economically convenient; hence, offline
inspections are required (Tzimerman and Herer 2009).

When designing an inspection strategy, not only
effectiveness, but also cost-efficiency must be consid-
ered. According to Emmons and Rabinowitz (2002),
implementing a quality system is expensive and
requires valuable resources. As companies invest large
amounts in products and production systems, imple-
menting an efficient inspection strategy is of much
importance to reduce quality related costs (Emmons
and Rabinowitz 2002).

Several techniques such as cost-benefit models
(Savio 2012), simulation (Neu et al. 2002; Neu et al.
2003; M€unch et al. 2002), optimization models
(Hanne and Nickel 2005; Shiau 2003) and mathemat-
ical programing models (Mohammadi et al. 2015)
have been proposed to plan inspection processes.
However, these techniques are highly applicable to
massive production, but are not so suitable for small-
sized productions. Indeed, the effectiveness of possible
inspection strategies is strictly related to the produc-
tion typology and volume (Genta, Galetto, and
Franceschini 2018; Galetto et al. 2018). In the case of
mass production, statistical process control (SPC)
techniques are straightforwardly applied (Montgomery
2012); on the other hand, in low-volume productions,
that is, single-units or small-sized-lots, traditional stat-
istical techniques may be not appropriate (Trovato
et al. 2010; Celano et al. 2011; Marques et al. 2015;
Del Castillo et al. 1996; Pillet 1996; Khoo and
Quah 2002).

Previous works focused on designing in-process
quality-inspection strategies in the case of low-volume
productions, for example, assembly processes, that are
decomposable into a number of steps in which spe-
cific defects can occur (Franceschini et al. 2018;
Genta, Galetto, and Franceschini 2018; Galetto et al.
2018; Trovato et al. 2010; Ho and Trindade 2009;
Galetto, Verna, and Genta 2020). However, in litera-
ture a scant number of studies investigated the plan-
ning of offline inspection strategies in low-volume
manufacturing productions, that is the typical case of
Additive Manufacturing (AM) processes. To date,
only few authors proposed analytical methods for
in-process defect detection and control strategies to
implement corrective or adaptive actions once a defect

has been detected during the process (Tapia and
Elwany 2014; Everton et al. 2016; Rao et al. 2015;
Grasso and Colosimo 2017; Colosimo 2018; Tsung
et al. 2018). As a result, quality inspections performed
on AM products are mainly restricted to offline con-
trols, that is, carried out at the end of the produc-
tion process.

The aim of this article is to provide a powerful
approach to assist inspection designers in early phases
of inspection planning in selecting the most suitable
offline quality-inspection strategy for low-volume
manufacturing processes with specific application to
AM. The work focuses the attention on a specific
research question, concerning how to select the best
compromise between effectiveness and affordability of
alternative offline inspection strategies in a low-vol-
ume AM production. In order to answer this ques-
tion, a probabilistic model for defect prediction is
defined and two indicators for comparing alternative
combinations of inspection strategies according to
their effectiveness and cost are proposed.

The rest of this article is organized into four sec-
tions. Section Modeling manufacturing process and
inspection strategy illustrates the probabilistic model
and the relevant characteristic parameters. Section
Indicators of inspection effectiveness and cost presents
two inspection indicators related to the overall effect-
iveness and total cost of an inspection strategy. In
Section Case study: low-volume additive manufactur-
ing production, a case study concerning the practical
application of the proposed method to the low-vol-
ume production of mechanical components produced
using an AM technique, the Selective Laser Melting
(SLM) process. Section Conclusion summarizes the
original contributions of this research, focusing on its
implications, limitations and possible future
developments.

Modeling manufacturing process and
inspection strategy

Consider a manufacturing process in optimal settings
condition in which there are m input variables that
influence the final quality of each single product,
which is evaluated through the measurement of n out-
put variables. In this situation, each input variable
may potentially affect each output variable with differ-
ent levels of intensity. In order to check the conform-
ity of the product, many different inspection strategies
aimed at evaluating the output variables may be per-
formed, such as dimensional verifications, visual
checks, comparison with reference exemplars,
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mechanical tests, etc. (Savio et al. 2016; See 2012;
Bress 2017). For each inspection activity, there is a
risk of detecting a defect when it is not present (type
I error), and a risk of not detecting it when it is actu-
ally present (type II error). Although these risks can
be minimized by using sophisticated (manual and/or
automatic) quality monitoring techniques, they can
never be eliminated.

In the proposed model, schematized in Figure 1,
each input variable is denoted as Xi, where the index i
is included between 1 and m. The output variables are
denoted as Yj, where j is included between 1 and n.
Each output variable Yj can be associated to three
model parameters:

� pYj : probability of occurrence of a defect related to
output variable Yj in nominal operating conditions;

� aYj : probability of erroneously detecting a defect
related to output variable Yj (i.e., type-I inspec-
tion error);

� bYj
: probability of erroneously not detecting a

defect related to output variable Yj (i.e., type-II
inspection error).

The estimation of the model parameters, which are
supposed to be random variables, is not a trivial issue.
The probabilities of occurrence of defects, pYj , are
strictly related to the intrinsic characteristics of the
process. On the other hand, the inspection errors aYj

and bYj
depend on the quality of the inspection activ-

ity (including the inspection typology and procedure,
the inspectors’ technical skills and/or experience, the
environmental conditions, etc.) (Duffuaa and Khan
2005; Kang et al. 2018; Tzimerman and Herer 2009;
Tang and Schneider 1987). Both probabilities of
occurrence of a defect (pYj) and inspection errors (aYj

and bYj
), in practical applications, may be estimated

by the implementation of probabilistic models and/or
empirical methods (historical data, previous experi-
ence on similar processes, process knowledge, etc.)
(Franceschini et al. 2018; Genta, Galetto, and
Franceschini 2018; Galetto et al. 2018).

Estimation of defective-output variable probability

The basic assumption of the model is that there is a rela-
tionship among input and output variables.
Consequently, if a defective-output variable occurs, it may
be caused by some input variables. The probabilities of
occurrence of defective-output variables may be therefore
obtained using the mathematical function relating input
and output variables (Montgomery 2017). In addition,
the proposed methodology requires the knowledge of the
input variables values that result in the best values of the
responses. Finally, the specification limits of the output
variables (upper specification limit, USL, and lower speci-
fication limit, LSL) are needed in order to determine
whether the products meet the specifications imposed by
regulations and/or company standards. Input variables
can be discrete or continuous variables. In this article
only continuous variables are dealt with in detail.

Consider for example a case with only one output
variable, denoted as Y, and one input variable, called X.
The relationship between the two variables is given by
the function Y¼ f(X). However, in realistic cases, this
function is not exactly defined, that is, the coefficients of
the mathematical model are affected by uncertainty.
Furthermore, also the optimal value of the input variable
(x�), that is, the value that optimizes the response out-
put, is not exactly defined because of the uncertainty of
the measurement device. For that reason, a variability
range must be associated to it (by defining an upper UL
and a lower LL variation limit, as illustrated in Figure 2).
The probability distribution associated to X depends on
the characteristics of the input variable. For instance, if
the values are all equiprobable in the interval, a uniform
distribution should be considered. As shown in Figure 2,
the variance of the probability distribution of the output
variable may be estimated by composing the uncertain-
ties associated to both the input variable and the math-
ematical function, through the law of composition of
variances (Ver Hoef 2012).

More in general, if there are m input variables,
X ¼ ½x1, :::, xm�T, the uncertainty of each one contrib-
utes to the variance of the related Yj output variable,

Input X1

Input Xi

Input X2

Input Xm

Input variable (Xi)

Product

Output Y1

Output Yj

Output Y2

Output Yn

Output variable (Yj)

...

...

...

...

Figure 1. Schematic of a production process with m input variables and n output variables and the related model parameters.
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together with the contribution of the mathematical
function coefficients, A ¼ ½a0, a1, :::, am�T, as shown in
Eq. [1], which is expressed in matrix form:

VARðYjÞ �
@Yj

@K

� �T
� covðKÞ � @Yj

@K

� �
ðj ¼ 1, :::, nÞ [1]

where K is the vector of size 2mþ 1 of the input vari-
ables and the coefficients of the mathematical func-
tion, defined as K ¼ ½X,A�T, covðKÞ is the variance-
covariance matrix and @Yj

@K

h i
is the vector of the partial

derivatives of Yj with respect to each component of K.
In covðKÞ, the element in the l, q position is the
covariance between Kl and Kq, defined as:

covðKl,KqÞ ¼ ql, q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðKlÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðKqÞ

q
[2]

where ql, q is the Pearson correlation coefficients
between the parameters Kl and Kq (Devore 2011).

Given that the distribution of output variable Yj

originates by many different random contributions,
according to the central limit theorem (Montgomery
2012), it can be approximated to a Normal distribu-
tion (see Section Estimation of the probabilities of
occurrence of defective-output variables). Hence, the
probability of occurrence of the defective-output vari-
able pYj , which represents the probability that Yj falls
outside the specification limits (LSL and USL), may
be estimated by computing the area of the normal
distribution outside the two specification limits by
Eq. [3]:

pYj
¼ 1� PðLSL � Yj � USLÞ [3]

Indicators of inspection effectiveness and cost

According to authors’ previous studies and re-elabo-
rating the proposed probabilistic model for in-process
inspections, the following probabilities can be calcu-
lated for each j-th output variable (Franceschini et al.
2018; Genta, Galetto, and Franceschini 2018):

Pðsignalling the output variable Yj as defectiveÞ
¼ pYj � ð1� bYj

Þ þ ð1� pYjÞ � aYj

[4]

Pðsignalling the output variable Yj as not defectiveÞ
¼ pYj � bYj

þ ð1� pYjÞ � ð1� aYjÞ
[5]

where j¼ 1, … , n, that is, the total number of out-
put variables.

It is worth noting that Eqs. [4] and [5] are obtained
under the hypothesis that the probabilities of occur-
rence of each defective output variable, pYj , and the
relevant inspection errors, aYj and bYj

, are independ-
ent. The above probabilities represent the “elementary
bricks” for the construction of two indicators depict-
ing the performance of inspection strategies in terms
of effectiveness and cost (Franceschini et al. 2018;
Genta, Galetto, and Franceschini 2018).

Let us now define n Bernoulli random variables
(Wj) as follows:

� Wj ¼0, when either (i) the truly defective output
variable Yj is detected as such or (ii) the output
variable Yj is not defective;

� Wj ¼1, the truly defective output variable Yj is not
detected as such.

Figure 2. Estimation of the probability of occurrence of defective-output variable (pY ).
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According to Eq. [4] and [5], the following two
relationships are obtained:

PðWj ¼ 0Þ ¼ pYj � ð1� bYj
Þ þ ð1� pYjÞ [6]

PðWj ¼ 1Þ ¼ pYj � bYj
[7]

where j is included between 1 and n.
Therefore, the mean number of real defective-out-

put undetected for the j-th output-variable is:

DYj ¼ EðWjÞ ¼ pYj � bYj
[8]

Considering the overall inspection strategy, the
mean total number of defective-outputs which are
erroneously not detected can be defined as:

Dtot ¼
Xn
j¼1

EðWjÞ ¼
Xn
j¼1

pYj � bYj
[9]

The variable Dtot is assumed as a first approxima-
tion of inspection effectiveness, since it provides an
indication of the overall effectiveness of the inspection
strategy performed on the product. It should be
pointed out that Eq. [9] is obtained under the hypoth-
esis of no statistical correlation between random varia-
bles, that is, between the model parameters
(inspection errors and defect probabilities) of different
output variables. This correlation will be investigated
in future research.

Regarding each output variable Yj, the total cost for
inspection and defects removal can be expressed as
(Genta, Galetto, and Franceschini 2018):

CYj ¼ FCj þ cj þ NRCj � pYj � ð1� bYj
Þ þ URCj

� ð1� pYjÞ � aYj þ NDCj � pYj � bYj
[10]

where:

� FCj is the fixed cost for controlling and keeping
the input variables at the values which result in the
best values of the response, and within their vari-
ability range;

� cj is the cost of the j-th inspection activity (e.g.,
manual or automatic inspection activities);

� NRCj is the necessary-repair cost, that is, the neces-
sary cost for removing defects of the j-th out-
put variable;

� URCj is the unnecessary-repair cost, that is, the
cost incurred when identifying false defective-out-
put variables; for example, despite there is no cost
required for defective-output variables removal, the
overall process can be slowed down, with a conse-
quent extra cost;

� NDCj is the cost of undetected defective-output
variables, that is, the cost related to the missing
detection of defective-output variables.

Eq. [10] requires, in addition to the estimates of the
probabilities pYj , aYj and bYj

, the evaluation of the
costs FCj, cj, NRCj, URCj, NDCj, which are considered
fixed parameters as a preliminary approximation.
Typically, FCj, cj and NRCj are known costs. URCj is
usually relatively easy to estimate, while NDCj is usu-
ally hard to estimate since it may depend on difficult-
to-quantify factors, such as external failure costs
including legal fees related to customer lawsuits, loss
of future sales from dissatisfied customers, product
recalls, product return costs, after-sales repair costs,
etc. (Galetto et al. 2018).

The total cost for inspection and defective-output
variables removal related to the overall inspection
strategy (n output variables) can be expressed as:

Ctot ¼
Xn
j¼1

CYj

¼
Xn
j¼1

½FCj þ cj þ NRCj � pYj � ð1� bYj
Þ þ URCj

� ð1� pYjÞ � aYj þ NDCj � pYj � bYj
�

[11]

Eq. [11] may be considered a preliminary approxi-
mation of the total cost of the inspection strategy.
However, even for this indicator, it is assumed that no
statistical correlation between inspection errors and
defect probabilities of different output variables
occurs. In some circumstances, for example, cost shar-
ing between the output variables, Ctot might overesti-
mate the costs related to the inspection strategies
when correlation between variables occurs.

The general methodology is organized according to
the following steps:

1. identification of input and output variables;
2. designing experimental plans in order to obtain

the mathematical functions (regression models)
relating each output variable with input variables;

3. responses optimization (searching for the best val-
ues of the regression models);

4. identification of all the sources of uncertainty,
including the uncertainty of the mathematical
function variables and the resolution interval of
input variables;

5. estimation of probabilities of occurrence of
defective-output variables;
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6. estimation of variables related to inspections, such
as inspection errors and inspection costs;

7. comparison of alternative inspection strategies.
An inspection strategy is defined as the combin-
ation of inspection methods used to perform
quality controls on output variables. Each inspec-
tion strategy is evaluated by two indicators of (i)
inspection effectiveness and (ii) inspection costs.
The combination of these indicators allows the
manufacturer to choose the most suitable one.

The proposed methodology will be described in
detail through the case study in the next Section Case
study: low-volume additive manufacturing production.

Case study: Low-volume additive
manufacturing production

SLM process

Consider the low-volume production of components
by Additive Manufacturing process based on selective
laser melting (SLM) technique, also called direct metal
laser sintering (DMLS). In this process, a high-density
object is built up layer by layer through the consolida-
tion of metal powder particles with a focused laser
beam that selectively scans the surface of the powder
bed (Gibson, Rosen, and Stucker 2014). The alumi-
num samples, produced using the AlSi10Mg alloy,
were prepared by SLM with an EOS M290 machine.
In this machine, a powerful ytterbium (Yb) fiber laser
system in an argon atmosphere is used to melt pow-
ders with a continuous power up to 400W, a scan-
ning rate up to 7m/s, and a spot size of 100 mm.
During the production process, three areas can be
identified in the parts: up-skin, down-skin and
in-skin, as shown in Figure 3a. The up-skin is the
region on the part layer above which there is no area
to be exposed. The bottom region which is in contact
with the building platform below it and laser exposed
areas above it is called down-skin. The third area, the
in-skin, is the region where there are above and below
exposed areas. For each layer, a contour of the layer

structure is exposed with the contour speed and the
laser power. After that, the inner area is solidified by
means of the laser beam which moves line after line
several times. The distance between the lines is called
hatching distance. Once the inner area is solidified, a
second exposure of the exterior part contour is carried
out in order to increase the accuracy of the building
process (Calignano et al. 2013). Several studies
(Krishnan et al. 2014; Tian et al. 2017; Trevisan et al.
2017) have shown that this region-wise differentiated
parameter setting can achieve control of material
properties, such as surface finishing and mechanical
properties. In fact, according to Figure 3a, up- and
down-skin parameters are related to surface proper-
ties, while in-skin parameters to the core average
properties of the component.

Output variables optimization

In this case study, the output variables measured on
the specimens were macro-hardness and up-skin
roughness. It is evident from the literature that con-
trolling and changing process variables may result in
different quality outputs of the parts. Specifically, the
most influencing process variables on the hardness of
the parts are laser power, scan speed and hatching
distance of the in-skin (Krishnan et al. 2014). For the
surface roughness, process parameters chosen were
laser power, scan speed and hatching distance of the
up-skin (Calignano et al. 2013). The specimens, whose
dimensions are 22x10x10mm, were designed, accord-
ing to Figure 3b, in order to measure both surface
roughness and hardness. The different inclinations of
the sample will allow to evaluate how the roughness
changes with the variation of the surface considered.
In this study, the roughness of the upper surface is
analyzed in detail.

In order to obtain optimal process parameters that
result in the best values of hardness and roughness, two
experimental plans were designed. Specifically, two 33

full factorial design were performed in order to investi-
gate possible quadratic effects of input variables. For the

Figure 3. (a) Schematic of up-skin, in-skin and down-skin areas; (b) Geometry of specimen.
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first response, the hardness, the three input variables
relevant to the in-skin, laser power (PI), scan speed (vI)
and hatching distance (hdI), were kept at three levels.
Similarly, three levels were chosen for the three input
variables for up-skin, laser power (PU), scan speed (vU)
and hatching distance (hdU) (see Table 1). In this experi-
ment, the down-skin roughness was not specifically
investigated. Variable values used were the same of those
of the up-skin. Consequently, the results achieved for the
up-skin can also be reasonably exploited for the assess-
ment of the down-skin. The choice of the levels of the
process variables set in both the experimental plans
allowed to get a wide range of energy density function,
w, which is calculated as follows:

w ¼ P
hd � v � t

J
mm3

� �
[12]

where P and v are respectively the laser power and scan
speed, hd is hatching distance and t is layer thickness.
Specifically, in the first experiment w varied from 35.09 to
124.58 J/mm3 and in the second from 44.97 to 134.47 J/
mm3. Energy density is strictly related to the degree of
consolidation of the powder particles and may cause
defects by creating turbulences in the melt pool (Read
et al. 2015). Consequently, it is often adopted in literature
as reference parameter for the setup of a planned experi-
mentation (Trevisan et al. 2017). The experiments were
not randomized because the high repeatability of the
machine allowed building the samples in a single job, by
varying process parameters for each sample (Calignano
et al. 2013; Read et al. 2015). This approach, as a first
approximation, is the one adopted in the computer
experiment field (Sacks et al. 1989).

After the production, the 27 specimens for hard-
ness measurements were polished. Then, the Brinell
hardness test was performed according to the indus-
trial standard ISO 6506-1:2014 (ISO 6506-1:2014). The
test was carried out using a sphere with a diameter of
2.5mm and applying a force of 62.5 kgf, thus evaluat-
ing Brinell hardness in the scale HBW 2.5/62.5. For
simplicity of notation, the measurement unit of
Brinell hardness will henceforth be indicated in this
article with the symbol HB. Three measures for each
specimen were taken and the average value was

examined. The coefficient of variation of the three
hardness measurements ranges from a minimum of
1% to a maximum of 7% (see Appendix A).

The surface roughness on top surface of the other
27 samples was measured according to industrial
standards ISO 4287 and ISO 4288, using a contact sty-
lus, Veeco Dektak 150 Surface Profiler, with a 2mm
radius stylus tip (ISO 4287:2009; ISO 4288:2000). The
roughness parameter calculated from the filtered
roughness profile was Ra, defined as the average value
of the ordinates from centerline. For surfaces having a
periodic profile, such as the top surfaces of the sam-
ples, the prescribed sampling length is based on the
mean width of profile elements (RSm). When RSm is
included between 0.13mm and 0.4mm, it is recom-
mended to use a sampling length for filtering of
0.8mm and to perform measurements over five con-
secutive sampling lengths, resulting in an evaluation
length of 4mm (ISO 4288:2000). Three measurements,
each 1mm apart, in the direction perpendicular to the
scan path were performed on each sample, and the
average value was examined. The coefficient of vari-
ation of the three roughness measurements ranges
from a minimum of 1% to a maximum of 18%, except
for a single sample which reaches 48% (see Appendix
B). Such high value may be attributed to the peculiar-
ities of the measurement activity. Indeed, due the dis-
crete nature of the measurements obtained using the
contact stylus, each roughness measurement may be
sensitive to localized defects. However, considering
the mean value of three measurements, the roughness
value obtained can be considered representative of the
up-skin. The use of a non-contact device, such as a
Point Autofocus Instrument (PAI), as will be illus-
trated in Section Comparison of alternative inspection
strategies, could help to reduce measurements’ uncer-
tainty and the related inspection errors.

The arrangement of the two 33 full factorial designs
with the indication of the three measurements, the
resulting mean value, standard deviation and coefficient
of variation for the hardness and the up-skin roughness
are reported in Appendix A and B, respectively.

The Response Surface Methodology (RSM) was used to
analyze the results and optimize the process for both the

Table 1. Process parameters values used in the two planned experimentations.
Hardness HB (HB) Roughness Ra (mm)

Process variable Values Fixed parameter Value Process variable Values Fixed parameter Value

PI (W) 340-355-370 Layer thickness (mm) 30 PU (W) 340-355-370 Layer thickness (mm) 30
vI (mm/s) 900-1300-1700 Spot size (mm) 0.1 vU (mm/s) 800-1000-1200 Spot size (mm) 0.1
hdI (mm) 0.11-0.15-0.19 PU (W) 355 hdU (mm) 0.11-0.16-0.21 PI (W) 355

vU (mm/s) 100 vI (mm/s) 1300
hdU (mm) 0.16 hdI (mm) 0.15
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experimental designs (Montgomery 2017). The arrange-
ment of the two full factorial design allowed the develop-
ment of an appropriate empirical equation, a second order
polynomial multiple regression equation. The standard
stepwise regressionwas adopted to obtain amodel contain-
ing exclusively significant factors. This method both adds
and removes predictors at each step, according to selected
Alpha-to-Enter and Alpha–to-Remove values (Devore
2011). These two values were set at 10% to allow entering
terms very close to the significance level of 5%. The soft-
ware MinitabVR , which was used to perform the analysis,
provided the coefficients of the significant regression terms
with their relevant standard errors, reported in Table 2,
and the regression equations showed in Eqs. [13] and [14].
The analysis of residuals, that is, the differences between
the observed and the corresponding fitted value, for both
hardness and roughness, showed a random pattern of
residuals and the absence of systematic errors.
Furthermore, the R2 value, a measure of goodness model
fit, shows that the variation in the response explained by
the model is 92.32% for HB and 72.50% for Ra. Moreover,
the S value, also known as the standard error of the regres-
sion or as the standard error of the estimate (Devore 2011),
is 4.55 for HB and 4.13 for Ra. The 3D surface plots repre-
senting how the fitted responses are related to the process
variables are reported in Figures 4 and 5.

HB ¼ a0 þ a1 � PI þ a2 � vI þ a3 � hdI þ a4 � vI � vI þ a5

� vI � hdI
[13]

Ra ¼ b0 þ b1 � vU þ b2 � hdU þ b3 � PU � PU þ b4 � PU
� vU þ b5 � PU � hdU

[14]

In order to find the best values of laser power, scan
speed and hatching distance, two response optimiza-
tions were performed. The objective functions were the
maximization of hardness and the minimization of sur-
face roughness. Parameters setups and the respective
value of energy density w are summarized in Table 3,
together with the predicted value of responses.

Estimation of the probabilities of occurrence of
defective-output variables

Once the input parameters optimizing the responses
were obtained, the variances of the output variables
were derived, according to Eq. [1], by propagating the
uncertainty of both the mathematical function parame-
ters (see Table 2) and the input variables, evaluated as
the resolution of the AM machine (see Table 4). The
AM measuring device that displays the values of input
variables is digital. In such case, the distribution of the
resolution contribution is uniform, because the measur-
and can be assumed to have an equal probability of
occurrence at any point in the range associated with the
displayed value, that is, the resolution interval (JCGM
100:2008 2008). Accordingly, the standard deviations of
the input variables are calculated considering a uniform
distribution and are reported in Table 4 (JCGM
100:2008 2008). The Pearson correlation coefficients
between the parameters of the regression models used
in the variance-covariance matrix (see Eq. [2]) were
derived by the software MinitabVR . The computations
were performed using the software MATLABVR and the
obtained variances of hardness and roughness are
reported in Eqs. [15] and [16] respectively.

VARðHBÞ � @HB
@KHB

� �T
� covðKHBÞ � @HB

@KHB

� �
¼ 4:62HB2

[15]

where

KHB ¼ ½PI, vI, hdI , vI � vI, vI � hdI , a0, a1, a2, a3, a4, a5�T:

VARðRaÞ � @Ra
@KRa

� �T
� covðKRaÞ � @Ra

@KRa

� �
¼ 6:55lm2

[16]

where KRa ¼ ½PU , vU , hdU , PU � PU , PU � vU ,PU �hdU ,

b0, b1, b2, b3, b4, b5�T:
The distributions of the two responses (HB and Ra)

were also obtained through a computer simulation. In
both cases, the normality of the distributions cannot be
rejected by the Anderson-Darling test at a significance

Table 2. Estimates of regression models’ parameters (see Eqs. [13] and [14]), with their standard errors (SE), separately for the
hardness HB (HB) and roughness Ra (mm). The standard error of the estimate is 4.55 for HB and 4.13 for Ra.
Hardness HB (HB) Roughness Ra (mm)

Variable Parameter
Parameter
estimate

Parameter
SE estimate Variable Parameter

Parameter
estimate

Parameter
SE estimate

Constant a0 (HB) �5.12�	 101 3.57�	 101 Constant b0 (mm) 8.71�	 101 8.45�	 101

PI a1 (HB/W) �1.42�	 10�1 7.16�	 10�2 vU b1 (mm/(mm/s)) �2.99�	 10�1 1.41�	 10�1

vI a2 (HB/(mm/s)) 2.19�	 10�1 3.28�	 10�2 hdU b2 (mm/mm) 9.85�	 102 5.64�	 102

hdI a3 (HB/mm) 4.85�	 102 1.10�	 102 PU�PU b3 (mm/W2) �5.85�	 10�4 6.68�	 10�4

vI�vI a4 (HB/(mm/s)2) �5.46�	 10�5 1.16�	 10�5 PU�vU b4 (mm/(W�mm/s)) 8.76�	 10�4 3.96�	 10�4

vI�hdI a5 (HB/(mm2/s)) �2.69�	 10�1 8.22�	 10�2 PU�hdU b5 (mm/(W�mm)) �2.58�	 100 1.59�	 100
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level of 5%. Thus, under the hypothesis of normal dis-
tribution, the probabilities of occurrence of the defect-
ive-output variables may be obtained. Given the mean
values, reported in Table 3, the variances of Eqs. [15]
and [16], and the specification limits, the probabilities
of occurrence of defects, pHB and pRa, were derived by
applying Eq. [3]. The specification limits were fixed
according to technological requirements for the pro-
duced parts (for hardness a lower specification limit,
LSL, was set to 114 HB and for roughness an upper spe-
cification limit, USL, was set to 36 mm). The two result-
ing probabilities are shown in Eqs. [17] and [18].

pHB ¼ PðHB � LSLÞ ¼ 0:55% [17]

pRa ¼ PðRa 
 USLÞ ¼ 0:67% [18]

Comparison of alternative inspection strategies

The AM production of these components may be
inspected through different offline inspections

concerning macro-hardness and roughness evalua-
tions. In this section, four alternative inspection strat-
egies are examined and compared. With respect to
hardness, the Brinell Hardness (HB) and Rockwell
Hardness (HRB) tests are examined. HB test is a
widely used method for characterizing specimens by
SLM. The main advantage is the simplicity of imple-
mentation, while the main defect is represented by the
difficulty (and ambiguity) of the measure (Herrmann
2011). HRB test is much faster and cheaper than the
Brinell test, making this a widely used method of
measuring metal hardness in industrial context.
However, the considerable practical advantages are
accompanied by a loss of the metrological characteris-
tics (Herrmann 2011). As far as roughness measure-
ment is concerned, two instruments belonging to two
different classes of methods for surface texture meas-
urements, the Line Profiling and the Areal
Topography, are considered (Leach 2011). Specifically,
the first instrument is a Contact Stylus (CS) and the

Figure 4. Surface plot of HB (HB) versus: (a) hdI (mm) and PI (W) (vI was set to 1300mm/s); (b) vI (mm/s) and PI (W) (hdI was set
to 0.15mm); (c) hdI (mm) and vI (mm/s) (PI was set to 355W).

Figure 5. Surface plot of Ra (mm) versus: (a) hdU (mm) and PU (W) (vU was set to 1000mm/s); b) vU (mm/s) and PU (W) (hdU was
set to 0.16mm); c) hdU (mm) and vU (mm/s) (PU was set to 355W).

Table 3. Responses optimization (max. HB and min. Ra): process setups and predicted values.
Control factors HB predicted value Control factors Ra predicted value

PI (W) vI (mm/s) hdI (mm) w (J/mm3) Mean value (HB) PU (W) vU (mm/s) hdU (mm) w (J/mm3) Mean value (mm)
340 1538 0.19 38.78 122.45 340 1200 0.11 85.85 29.68

Table 4. Variability range (i.e., resolution interval) and standard deviation of input variables, under the assumption of uniform
distributions.
Up-skin and in-skin process variables Resolution of AM machine Process variable variability range Process variable standard deviation

Laser power (W) 0.1 (PI± 0.05) (PU± 0.05)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:052=3

p
¼ 2:89 � 10�2

Scan speed (mm/s) 0.1 (vI± 0.05) (vU± 0.05)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:052=3

p
¼ 2:89 � 10�2

Hatching distance (mm) 0.01 (hdI± 0.005) (hdU± 0.005)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0052=3

p
¼ 2:89 � 10�3

It is reminded that the variance of a uniform distribution is r2¼a2/3, where a is half of the variability range.
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second one is a Point Autofocus Instrument (PAI). In
CS, the stylus is loaded on the surface to be measured
and then moved across the surface at a constant vel-
ocity to obtain surface height variation (Leach 2011).
A PAI is a non-contact, optical measuring instrument
that automatically focuses a laser beam to a single
point on the surface and raster scans an area of inter-
est (Maculotti et al. 2019). Each of the four different
methods is characterized by the three probabilities
pYj , aYj and bYj

, which are reported in Table 5.
In Table 5, hardness defect probabilities (pHB and

pHRB) were considered identical and equal to the prob-
ability pHB obtained in Eq. [17], as well as for roughness
defect probabilities (pCS and pPAI), which were set equal
to pRa derived in Eq. [18]. In fact, as a preliminary
approximation, the two different methods for inspect-
ing both hardness and roughness are based on similar
technologies with comparable performances in terms of
detection of defects. In other words, although pHB and
pRa are strongly dependent on the instrument used,
they can be considered good estimates of the actual
defectiveness in terms of order of magnitude. In order
to refine the estimates of pHRB and pPAI, future research
will be aimed at designing a specific planned experi-
mentation. The inspection errors aYj and bYj

were esti-
mated by the inspectors, for each inspection method,
basing on empirical values obtained from similar parts
produced with the adopted SLM technique and other
manufacturing process such as casting processes. Table
5 also reports the estimates of the cost parameters for
each inspection method (HB, HRB, CS and PAI). CFj
were estimated as the cost for calibrating the AM
machine carried out by the supplier during the prevent-
ive maintenance. The estimates of cj were calculated
considering the time required for the inspection and
the Labor cost of operators/inspectors. NRCj and URCj

were estimated starting from the time required for iden-
tifying and repairing possible defects (necessary or
unnecessary), and the respective Labor cost. Finally,
NDCj included external failure costs. According to Eqs.

[8] and [10], the indicators DYj and CYj were calculated
for each inspection method and were reported in
Table 5.

By combining the four different inspection methods
of Table 5, four inspection strategies may be per-
formed (see Table 6). The first one, IS1, includes
Brinell hardness test and roughness measurement with
the contact stylus CS. The second, IS2, is performed
with a Brinell hardness test and a roughness test using
a PAI. IS3 requires hardness to be measured with a
Rockwell test (HRB) and roughness with the contact
stylus CS. Finally, IS4 involves measuring hardness
with a Rockwell test (HRB) and roughness using a
PAI. Table 6 shows the indicators Dtot and Ctot

obtained for the inspection strategies IS1, IS2, IS3 and
IS4, calculated using respectively Eqs. [9] and [11].
The strategy with the lowest value of Dtot is IS2, but it
is also the most expensive one. Conversely, IS3 has
the lowest Ctot, but it is characterized by the highest
mean total number of undetected defects. IS1 and IS4
are two intermediate strategies between IS2 and IS3.
According to these results, the producer of SLM parts
may easily select the best inspection strategy that
adequately satisfies its needs. In fact, according to
cost-benefit logic, if the producer is willing to accept a
high mean number of undetected defective-output
variables in order to have low total inspection costs,
the best choice is IS3. On the contrary, if his objective
is the minimization of defects, the producer will select
IS2, while accepting a quadruple increase in costs with
respect to IS3. The decision is strictly related to the
producer requirements, which are in turn connected
with the certification constraints imposed by the prod-
uct application sectors. For instance, if the component
is designed for medical or aerospace sectors, the pro-
ducer may be more inclined to choose the strategy
that minimizes Dtot, instead of choosing the most
affordable one, because of the considerable conse-
quences that residual defects could have. On the con-
trary, if the sector requirements are not so stringent,
the producer is led to choose the most affordable
strategy. However, it should be highlighted that the
number of undetected defects in all the four strategies
is very small, also considering that it refers to a low-
volume production. Indeed, despite in IS3 the

Table 5. Estimates of defects probabilities, inspection errors, cost parameters and inspection indicators related to each inspection
method (HB, HRB, CS and PAI).
Output variable Inspection method pYj (%) aYj (%) bYj (%) CFj (e) cj (e) NRCj (e) URCj (e) NDCj (e) DYj (-) CYj (e)

Hardness HB 0.55 2 1 15 12.5 50 50 100 5.53�	 10�5 28.77
HRB 0.55 3 2 15 4.2 50 50 100 11.05�	 10�5 20.97

Roughness CS 0.67 5 4 15 6.3 1.3 1.3 80 26.79�	 10�5 21.39
PAI 0.67 2 1 15 125 1.3 1.3 80 6.70�	 10�5 140.04

Table 6. Indicators values calculated for IS1, IS2, IS3 and IS4.
Indicator IS1 IS2 IS3 IS4

Dtot (-) 3.23�	 10�4 1.22�	 10�4 3.78�	 10�4 1.78�	 10�4

Ctot (e) 50.16 168.81 42.36 161.01
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indicator Dtot is almost three times greater than in
IS2, it means that given a production of 104 compo-
nents, there are nearly 4 defective-output variables
which are erroneously not signaled. Since the produc-
tion of these components can reach a hundred parts
per year, the number of defects which are erroneously
not signaled is actually very low.

Conclusion

Designing effective and affordable inspection strategies
plays an important and challenging role in manufac-
turing process. In literature, several techniques have
been proposed to plan inspection strategies in massive
productions. However, these techniques are often not
suitable for low-volume productions. This article pro-
poses a powerful approach to assist inspection design-
ers in the selection of the best compromise between
effectiveness and affordability of alternative offline
inspection strategies, when in-process controls are not
adequate or impossible to be performed. A probabilis-
tic model for defects prediction is formulated starting
from some process parameters which influence prod-
uct final quality and output variables inspected on the
product. Two practical indicators to compare different
inspection methods according to their effectiveness
and cost are proposed. According to cost-benefit logic,
the combined use of the inspection indicators allows
the comparison of alternative inspection strategies,
and the selection of the most appropriate according to
the manufacturer requirements. This approach may
represent a powerful approach to assist inspection
designers in early design phases of inspection plan-
ning. In this work, a case study concerning the low-
volume production of metal components by AM is
discussed and the comparison of four different inspec-
tion strategies is presented. A first limitation of this
study is that the probabilistic model and the two indi-
cators do not consider possible correlations between
parameters of different output variables. In addition,
the estimation of various not-so-easily-quantifiable
parameters is required. Nevertheless, a deep know-
ledge of the process and expert opinion can help to
overcome this limit. Future research will aim at intro-
ducing correlations between variables and at develop-
ing specific models for predicting inspection errors
using an approach similar to that adopted for defect
generation models. Moreover, specific studies will
focus on the uncertainty assessment of the two indica-
tors of effectiveness and affordability.
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Appendix A:
Arrangement of the 33 full factorial design to evaluate the hardness HB (HB), with indication of the
three measurements, the resulting mean value, standard deviation and coefficient of variation

PI (W)
vI

(mm/s)
hdI

(mm)
Measurement

1 (HB)
Measurement

2 (HB)
Measurement

3 (HB)
Mean value

(HB)
Standard

deviation (HB)
Coefficient

of variation (%)

340 900 0.11 87 84 86 85.7 1.5 2
340 900 0.15 93 88 90 90.3 2.5 3
340 900 0.19 104 102 105 103.7 1.5 1
340 1300 0.11 101 89 100 96.7 6.7 7
340 1300 0.15 112 115 118 115.0 3.0 3
340 1300 0.19 119 120 124 121.0 2.6 2
340 1700 0.11 116 121 124 120.3 4.0 3
340 1700 0.15 118 120 118 118.7 1.2 1
340 1700 0.19 113 122 124 119.7 5.9 5
355 900 0.11 76 75 77 76.0 1.0 1
355 900 0.15 84 90 89 87.7 3.2 4
355 900 0.19 99 99 101 99.7 1.2 1
355 1300 0.11 107 109 108 108.0 1.0 1
355 1300 0.15 114 118 117 116.3 2.1 2
355 1300 0.19 117 118 124 119.7 3.8 3
355 1700 0.11 111 114 119 114.7 4.0 4
355 1700 0.15 115 121 120 118.7 3.2 3
355 1700 0.19 117 116 113 115.3 2.1 2
370 900 0.11 80 80 76 78.7 2.3 3
370 900 0.15 87 88 87 87.3 0.6 1
370 900 0.19 88 78 88 84.7 5.8 7
370 1300 0.11 103 100 98 100.3 2.5 3
370 1300 0.15 107 111 113 110.3 3.1 3
370 1300 0.19 119 116 120 118.3 2.1 2
370 1700 0.11 119 120 122 120.3 1.5 1
370 1700 0.15 114 117 118 116.3 2.1 2
370 1700 0.19 112 116 121 116.3 4.5 4
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Appendix B:
Arrangement of the 33 full factorial design to evaluate the up-skin roughness Ra (mm), with
indication of the three measurements, the resulting mean value, standard deviation and
coefficient of variation

PU (W) vU (mm/s) hdU (mm)
Measurement

1 (mm)
Measurement

2 (mm)
Measurement

3 (mm) Mean value (mm)
Standard

deviation (mm)
Coefficient of
variation (%)

340 800 0.11 26.6 29.6 28.7 28.30 1.5 5
340 800 0.16 36.4 31.1 32.8 33.43 2.7 8
340 800 0.21 38.3 35.1 38.3 37.23 1.8 5
340 1000 0.11 28.2 37.4 28.5 31.37 5.2 17
340 1000 0.16 40.0 33.2 35.3 36.17 3.5 10
340 1000 0.21 40.3 40.5 47.6 42.80 4.2 10
340 1200 0.11 41.7 24.6 15.9 27.40 13.1 48
340 1200 0.16 30.4 32.8 30.4 31.21 1.4 4
340 1200 0.21 42.1 30.7 31.3 34.70 6.4 18
355 800 0.11 28.0 30.6 25.6 28.07 2.5 9
355 800 0.16 42.4 39.8 32.6 38.27 5.1 13
355 800 0.21 46.4 37.4 34.7 39.50 6.1 16
355 1000 0.11 33.0 33.2 31.9 32.70 0.7 2
355 1000 0.16 47.3 36.7 43.5 42.50 5.4 13
355 1000 0.21 44.3 39.3 44.9 42.83 3.1 7
355 1200 0.11 36.4 38.5 41.4 38.77 2.5 6
355 1200 0.16 46.3 42.2 42.9 43.80 2.2 5
355 1200 0.21 44.8 54.4 46.5 48.57 5.1 11
370 800 0.11 27.8 32.5 30.6 30.30 2.4 8
370 800 0.16 30.9 30.2 41.3 34.13 6.2 18
370 800 0.21 25.6 27.1 34.1 28.93 4.5 16
370 1000 0.11 31.3 42.4 35.2 36.30 5.6 16
370 1000 0.16 32.1 40.9 38.8 37.27 4.6 12
370 1000 0.21 39.3 29.3 30.9 33.17 5.4 16
370 1200 0.11 37.6 37.4 36.7 37.23 0.5 1
370 1200 0.16 39.5 31.2 33.5 34.73 4.3 12
370 1200 0.21 43.0 39.8 49.7 44.17 5.1 11
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